Tetrahedron Letters No. 46, pp 4069 - 4072, 1974. Pergamon Press. Printed in Great Britain.

A NEW APPROACH TO THE SYNTHESIS OF 2-SUBSTITUTED BENZOTHIOPHENS AND THEIR HETERO-ANALOGUES. Kenneth J. Brown and Otto Meth-Cohn*

Ramage Laboratories, University of Salford, Salford M5 4WT, England. (Received in UK 2 October 1974; accepted for publication 10 October 1974)

The substitution of benzothiophen by electrophiles takes place predominantly at the 3-position, while 2-substitution is possible by way of the readily prepared 2-lithio derivative¹. However, this latter method is not convenient for many useful substituents such as aryl, nitro, amino, acyl etc. We wish to report a simple, novel, 'one-pot' method that allows the synthesis of such 2-substituted compounds, as outlined in Scheme 1.

Scheme 1

The ozonation of benzothiophen was reported² to yield a mixture of the aldehyde (2) (20%), together with the corresponding acid (4) (30\%) and phenol (5) (50\%).

We find that the major products of ozonation $(CH_2Cl_2, -78^{\circ})$ are the aldehydes (2) and (6) (34 and 22% respectively), the latter breaking down on alkaline work-up to yield the aldehyde (2) and acid (4). The phenol is probably an artefact (Baeyer-Villiger reaction) produced by work-up according to the German method². The full details of our thorough **4069** investigation into this ozonation will appear elsewhere.

Interaction of the aldehyde (2) (which need not necessarily be isolated but used directly after treatment of the ozonised benzothiophen with dimethyl sulphide³) with compounds containing an 'active' methyl or methylene group yields 2-substituted benzothiophens as shown in the Table. The arylacetic acids generally gave a thiocoumarin by-product (7) which was readily separated by chromatography. Since the reaction involves an oxidation step, it was sometimes found advantageous to add $\frac{1}{2}$ mole benzoyl peroxide (see Table).

Г	a	b	1	е	
-		_	_	_	

Synthesis of 2-Substituted Benzothiophens (3) from benzothiophen/0, or from the aldehyde (2).

Reagent*	** Method	Product [*] (3) R=	Yield [‡] (%)	M.p. ([°] C) <u>+</u> 1	Remarks
сн ₂ (соон) 2	A	соон	77 (72)	240 ⁴	
сн ₂ (соон) ₂	A [±]	соон	21	240	
CH ₂ CN COOH	A	CN	16 (78)	oil	+ (3); R=CONH ₂ ⁵ m.p. 176 [°] (40%)
CH ₃ NO ₂	A	NO2	29 (77)	116 ⁶	
CH ₃ NO ₂	A [±]	NO2	38	116	
PhCH ₂ COOH	В	Ph	60 (37)	176 ⁷	+ (7; R=Ph) (38%)
РЬСН ₂ СООН	B [±]	Ph	17	176	
2-тhCH ₂ COOH	В	2-Th	65	156 ⁸	+ (7; R=2-Th) (35%)
3-ThCH ₂ COOH	В	3-Th	70	191	+ (7; R=3-Th) (27%)
PhCONHCH ₂ COOH	C	NHCOPh	25	174	
AcnhCh ₂ COOH	С	инсосн ₃	34	223 ⁹	+ (7; R=NHAc) (23%)
2-CH ₃ Py.MeI	D	2-Py.MeI	37	171	

 $\frac{1}{2}$ yield in parenthesis is with $\frac{1}{2}$ mole (PhCO)₂0₂ added to reaction mixture.

*Th = thienyl.	1 Starting from ozonised benzothiophen instead of aldehyde (2)
Py = pyridyl.	** Method A : 4 hrs. reflux in ethanol + triethylamine.
	Method B : 30 min. reflux in acetic anhydride + triethylamine
	Method C : 60 min reflux in acetic anhydride + sodium acetate
	Method D : 4 hrs reflux in methanol + piperidine.

Since the aldehyde (2) was so versatile in synthesis we sought other methods to make it. The most effective is indicated in Scheme 2^{10} , the starting material being readily available

Scheme 2

from diazotised anthranilic acid¹¹. Analogous products (e.g. 8) may be prepared (Scheme 3) which allow the synthesis of further substituted benzothiophens (e.g. 9; m.p. 157°)

Finally the use of other o-formyl disulphides or thiols is of interest. Thus while the readily made aldehyde¹² (10) gives solely the thiocoumarin (11; m.p. $223-5^{\circ}$), the

readily available $pyrazole^{13}$ (12) gave the thienopyrazole (14; m.p. 162-6°). In a

similar manner the thione (15) gave the nitrothienopyrazole (16; 23%, m.p. 178°) in the presence of benzoyl peroxide (Scheme 6).

We thank Monsanto Ltd. for a generous research grant.

References

- 1. B. Iddon and R. M. Scrowston, Adv. in Heterocyclic Chem., 1970, 11, 177.
- 2. A. von Waceck, H. O. Eppinger and A. von Bezard, Ber., 1940, 73, 521.
- 3. J. J. Pappas, W. P. Keaveney, E. Gancher and M. Berger, Tetrahedron Letters, 1966, 4273.
- G. M. Badger, D. J. Clarke, W. Davies, K. T. Farrer and N. P. Kefford, <u>J. Chem. Soc.</u>, 1957, 2624 record m.p. 236^o.
- 5. R. W. Goettsch and G. A. Wiese, J. Am. Pharm. Assoc., 1958, 47, 319 record m.p. 176⁰.
- D. E. Boswell, J. A. Brennan, P. S. Landis and P. G. Rodewald, <u>J. Het. Chem.</u>, 1968, 5, 69 record m.p. 116^o.
- 7. A. W. Horton, J. Org. Chem., 1949, 14, 760 records m.p. 176⁰.
- B. D. Tilak, J. Pandya, T. S. Murthy and O.V.S. Palkar, <u>4th Ann. Rep. Res. Petrol</u> Res. Fund, Am. Chem. Soc., 1960, 19 record m.p. 156^o.
- 9. P. J. Abramenko, Zhur. Vses. Khim. Obshch., 1970, 15, 461 records m.p. 222-3^P.
- 10. cf. E. F. Pratt and J. F. van de Castle, J. Org. Chem., 1961, 26, 2973.
- 11. C.F.H. Allen and D. D. Mackey, Org. Synth. Coll. Vol. II, 1944, 580.
- 12. R. Hull, J. Chem. Soc. Perkin Trans. I, 1973, 2911.
- 13. I. Ya. Kvitko and B. A. Porai-Koshits, Zhur. Org. Khim., 1969, 5, 1685.